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Abstract 

The various settings of a goniostat can best be calculated 
using a coordinate-free abstract operator notation. Con- 
cepts such as free axes, signed axes, angles and finite rota- 
tions are defined here using modern geometrical methods, 
and virtualized methods of describing combinations of ro- 
tations and of solving goniometric equations are given. 
These have the advantages of simplifying analysis and of 
being applicable to all types of machine. Three practi- 
cal examples appropriate to the use of an area-detector 
diffractometer are presented: the synthesis of true preces- 
sion motions using the concept of a 'virtual goniostat'; the 
generation of convenient crystal-viewing positions; and 
the solution of the equation of diffraction for the general- 
ized, non-normal beam, rotation method. Algorithmic so- 
lutions are quoted in all three cases, corresponding to the 
code used on the FAST system at Cambridge and to that 
released to the EEC Cooperative Workshop on Position- 
Sensitive Detector Software in Paris in 1986. The em- 
phasis has been placed on simple and reliable methods of 
computation. In each case, the equations reduce to the 
same, fundamental, form, containing four behaviourally 
distinct terms: one variable, one invariant, one odd and 
one even. The classical quatemion notation of theoretical 
physics, motor algebra and applications of dual numbers 
are also discussed. 

1. Introduction 

Rotations are conceptually very simple, and yet it is 
a common experience that rotational computations are 
tedious, difficult and prone to error. In this paper I pro- 
pose a coordinate-free geometrical interpretation, anno- 
tated and analysed using a set of abstract operators. In 
this way the structure of the equations can be seen very 
clearly, without being obscured by the minutiae of a com- 
ponent notati'on. The emphasis is placed on general, reli- 
able and quick methods of computation, not for abstruse 
questions and artificial problems, but for calculations that 
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must be performed routinely in the field of diffractometry. 
The equations presented here are simultaneously the most 
general expounded so far in this field, being applicable to 
every kind of diffractometer, and yet are also uniquely 
simple in form. It has been necessary to develop a new 
notation to achieve this, but the attendant unfamiliarity is 
soon overcome by a few practical calculations using it. 

To a large extent the present paper breaks with tradi- 
tion, and although we must discuss conventional methods 
to place it in context, it is not necessary to be familiar with 
the more advanced topics in the literature in order to un- 
derstand the new methods presented here. In fact, a major 
part of the considerable body of literature on the analysis 
of rotations continues a futile debate on whether or not the 
rather unapproachable quaternion notation is the best way 
to describe rotations in three-dimensional space. This has 
to be addressed in order to see how to continue. There are 
two distinct aspects to be considered: analysis and com- 
putation. 

Historically, our modern analytic understanding of ro- 
tations arose from a desire to achieve a simple mathe- 
matical description of orientation and an interpretation, in 
particular, of the way in which rotations combine. Euler 
(1775a) is credited with a method of describing orienta- 
tion, in terms of three angles, that survives to this day, par- 
ticularly in engineering applications (often as Tait-Bryan 
angles), though there remains no consensus on their pre- 
cise definition (Goldstein, 1950 or 1980, §4-4). Hamil- 
ton (1843a, b; 1844) is said to have solved the problem 
of combining rotations by observing that he needed three 
independent quantities, i, j and k (see Table 1 for sym- 
bols used in this section), which satisfy ~-'" = j-'" = k "2- -- 
i jk = - 1, though his equation for the combination of se- 
quentially applied rotations had already been obtained by 
Gauss in 1819 (published posthumously in 1900). Indeed, 
Rodrigues published a correct tetravariate form earlier, in 
1840. A precise modem definition of Hamilton's quater- 
nion algebra is given by Dimitri6 & Goldsmith (1989). 
Although Goldstein (1980, footnote at bottom of p. 156) 
describes quatemions as 'somewhat musty mathematics', 
they are still widely used in the form of Pauli spin matrices 
to execute transformations in the spinor calculus essential 
to modem physics. The related Cayley-Klein parame- 
ters are, indeed, still sometimes used (Goldstein, 1950 or 
1980, §4-5). The extra variable is used to achieve a ho- 
mogeneous structure (Diamond, 1988), which can be very 
convenient analytically (Klein, 1884b). Although com- 
plex numbers dominate modem analysis, engineers have 
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Table 1. Symbol table for §1 

even function in principal equation of  goniometry  

invariant term in principal equation of  goniometry 

the generators of  Hamil ton 's  quatemion algebra. 

direction cosines 
Diamond 's  notation for the quaternion vector (Goldstein uses e l ,  e2, e3) 

odd function in principal equation of  goniometry 

variable in principal equation of  goniometry 
a double-valued asymmetr ic  radical form in the reduced form of  the general solution 

the irrational number  3 .14159265- . .  

Diamond 's  notation for the quatemion scalar (Goldstein uses e0) 
(curly pi) the non-trivial square-root of  zero: w2 = 0, w y' 0 (more usually e or w) 

resurrected the dual numbers (a + wb; w 2 = 0, w ¢ 0)* 
of Clifford (1873) as an aid to the practical analysis of 
complex mechanical linkages (,~aMeHT6epr, 1948; De- 
navit, 1958; Yang & Freudenstein, 1964; Yang, 1969), 
exploiting the commutative properties of numbers and 
quaternions (e.g. Hamilton, 1853) and the immediate ter- 
mination of Maclaurin expansions containing w to enable 
simultaneous analysis of rotation and translation. Indeed, 
the axes of a goniostat are properly represented by mo- 
tors (Brand, 1947, Chapter II) but if all axes intersect the 
origin, we do not need this formalism. The modern in- 
terest in Clifford algebras and directed-number schemes 
has exposed a restrictive ambiguity in the use of com- 
plex numbers, so often used to contract rotational calcula- 
tions, which is that they represent simultaneously a point 
in space and a rotation-dilatation operation (Hestenes, 
1986). When the two functions are separated clearly, 
complex numbers are seen as a special (and rather de- 
generate) Clifford algebra. Real Clifford algebras in four 
dimensions can unify all of the tetravariate analyses of ro- 
tations in three dimensions, and are becoming important 
now because of their suitability to handle the rigours of 
various topics in theoretical physics. 

In recent years, with the advent of digital computers, 
the emphasis has turned to the practical implementation 
of rotational calculations. In many cases, the most ob- 
vious representation, in terms of 3 × 3 positive orthogo- 
nal (i.e. real unitary) matrices is used, and justifiably so 
because fewer machine operations are needed than with 
most competing formulations. The analytical efficiency 
of the tetravariate half-angle (i.e. quaternion) formula- 
tions is not manifest when actually evaluating the effect 
of a rotation on an object, primarily not because multipli- 
cation by 2 x 2 complex matrices or 4 × 4 real matrices 
takes more operations than does multiplication by 3 × 3 
matrices, but because all half-angle formulations neces- 
sarily mean that the primary rotation operator has to be 
applied not once, as is the case with 3 × 3 full-angle rota- 

tion matrices, but twice. Indeed, many texts simply state 
from the outset that rotations of vectors are expressed by 
an equation of the form X' = RXR* [see Misner, Thorne 
& Wheeler, 1973, equation (41.19), p. 1142] in which 
the vector, X, appears in the form of a 2 × 2 complex 
square matrix as if no other possibility existed; some do 
not explain even that much. The claims made in some 
texts for the quatemion formalism are therefore some- 
what exaggerated;* this is particularly true when its extra 
analytic power is not needed, such as when the axes of 
the rotations are not variable quantities, as indeed is the 
case when using a diffractometer, when they are constants 
fixed at the time of manufacture. 

Misner, Thorne & Wheeler (1973), probably follow- 
ing Klein, explain the occurrence of half-angles by mod- 

* See, for example, equation [24] in BRimlich & Spiess (1985), which 
requires 80 multiplications, 60 additions, 3 sines and 3 cosines to calcu- 
late the orientation resulting from rotations about principal axes of their 
representation. The authors ask us to note the simplicity of the calcula- 
tion, whose result is left, inconveniently, in half-angle form, regardless 
of the fact that an equivalent general calculation using 3 × 3 matrices in 
full-angle notation would require only 54 multiplications, 36 additions 
and the same number of trigonometric calculations. 

* Clifford, Denavit a n d ~ , u e a T 6 e p r  use w ~ = 0, whilst Brand, Yang 
and Freudenstein use e 2 = 0. The use of w here is to avoid a conflict 
with other conventional meanings of e and ~o and does not reflect either 
common or recommended usage. Indeed, even the nowadays rare w 
conflicts with Tait's (1890) widespread use of it in his standard work on 
quaternions as a general vector. 

Fig. i. A stereogram showing the occurrence of half-angles when 
determining axial orientations. It shows that the occurrence of 
halved angles is inevitable even without the contrived introduction 
of reflections. The author is grateful to Dr Robert Diamond for 
pointing out this construction. The annotation is chosen to match 
the discussion of the generation of precession motions in §9. 



D. J. T H O M A S  323 

elling rotations by double reflections, and yet the idea that 
(ex absurdoI) an infinitesimally small rotation is best ex- 
plained by two inversions of chirality is quite bizarre. In- 
deed, the set of reflections does not even form a group, 
whereas the set of rotations does, since the composition 
of two reflections is not another reflection, but a rotation 
(Klein, 1884a). A clearer demonstration of the inevitabil- 
ity of half-angles in the calculation of axial orientations is 
to be had by drawing the geometry out explicitly: here we 
use a stereogram (Fig. 1). 

We start with two rotation axes, ~ and ~, and choose a 
certain angle of rotation, s a y / s  and/c ,  for each of them. 
We can operate these two rotations sequentially in either 
order, giving different results, shown by Rodrigues (1840) 
to have the same angle of rotation, but different axes, say 
s'c and c's. That these are, indeed, the axes of the result- 
ing rotations can be established with certainty by noting 
that operation of the rotation ({) about { on 6s brings it 
into alignment with s'c, and the subsequent operation of 
the rotation (~) about ~: brings it back to its original ori- 
entation, c's. Thus c's, being unaffected by the sequential 
operation of ~ then E, must be the axis of the composite 
rotation. A similar construction applies for s'c. 

It is immediately clear that the great circle containing 
and ~ bisects the angles /6s~ s'c = / s  and /s'c ~ 6s = 

/c and that use must be made of these halved angles 
when determining the orientation of s'c or 6s by spheri- 
cal trigonometry. Notwithstanding this, it turns out, as 
we shall see later, that if our primary concern is to calcu- 
late the effects of rotation, rather than merely to determine 
the orientation of a generated axis, we can only compli- 
cate our calculations by adopting a half-angle notation. 

The intersection, 6, of the great circle containing ~ and ~: 
and the great circle containing s'c and c's (placed for con- 
venience at the zenith of the stereogram) is the axis of 
the rotation which would be produced if the two generat- 
ing rotations were applied simultaneously. This is of rel- 
evance in the generation of precession motions discussed 
in §9. 

such orbit the orbital plane. There are infinitely many 
such planes. Similarly, in any normal representation of 
space, these planes are locally flat and locally parallel. It 
is always possible to uncouple the translational part of a 
motion from the rotational, so our analysis has not been 
restricted by disregarding screw motions. 

We describe the line of stasis and any ray intersecting it 
and contained within the orbital plane as mutually orthog- 
onal. This must mean that in a Cartesian-Euclidean space 
they are normal to each other, and the angle between them 
is called a right angle. It is, however, a central theme of 
this paper that the behaviour of rotating objects can be 
made manifest without imposing a metric structure. This 
is quite unusual, and means that the approach here could 
be adopted into applied differential geometry, which has 
hitherto shunned rotations for want of a secure represen- 
tation for them (Burke, 1985). 

We also define three algebr_aic concepts. The first is 
a free axis, representable by E, which is identified with 
an unconstrained ability to rotate about a named axis or 
line of stasis. Closely related is the concept of a signed 
axis, representable by E, which differs only in having a 
specified sense of rotation which can be referred to as pos- 
itive. These concepts are illustrated in Fig. 2. The term 
'general axis', representable by 1~, can be used when the 
distinction need not be drawn. The signed axis is alge- 
braically powerful, and indeed the solution of many real 
problems in goniometry depend upon its use. Addition- 
ally, it is the natural description of the properties of all 
commonly used numerical representations of the direc- 
tion of axes of rotation. 

The concepts of rotation, which we may represent by 
1~, and angle, representable by/e ,  in this paper have their 
conventional meaning in Euclidean space. With these 
definitions, all of the principal equations of goniometry 
split into four behaviourally distinct components which 
we arrange as follows: 

V : Z(E) + O(E,Le) + E(E,/e). (2.1) 

2. A symmetry-based decomposition of the 
structure of rotation 

To proceed further, we define two geometrical concepts: 
the line of stasis and the orbital plane. In any rigid-body 
motion, there is always a unique and well defined locus 
(set of points), not necessarily within the body, which has 
no velocity; points within the locus may translate along 
it, but the locus itself is (at least momentarily) stationary. 
This is a consequence of a proof credited to Chasles, who 
showed that the most general possible motion of a rigid 
body is a screw motion, itself a corollary of an earlier the- 
orem of Euler (1758, 1765). I call this locus the line of 
stasis, and it corresponds with the instantaneous axis of 
rotation. In any normal representation of space, this line is 
locally straight. During purely rotational motions, points 
which are not in the line of stasis must execute an orbital 
motion around it, and I call the instantaneous plane of any 

Fig. 2. A free axis and a signed axis. It is to be noted especially that a 
representation of the sense of rotation of an axis by means of a vector 
pointing along it is rigorously to be avoided. It is simpler, more 
reliable, and in no way less convenient to mark it by the direct means 
of an arrow wrapped around the line of stasis in one of the orbital 
planes. This technique draws heavily on the arguments to be found 
in Burke (1985) and ensures that the geometrical representation does 
not depend on an externally defined handedness of interpretation. 
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I 

El 
g 
E 
Iz 
/e 

ETE 
EIE 

ELE 

IE 3 
~3 
exp 
o 

Table 2. Symbol table for §3 

the identity operator; also the identity matrix 
a rotation axis 
a rotation axis as a left-acting operator 
a signed axis 
a free or unsigned axis 
a sixa, i.e. a rotation axis as a right-acting operator; geometrically dual to El 
an angle of rotation about 1~ 
an operator performing differentiation with respect to an angle of rotation 
the rotation symmetric operator 
the rotation antisymmetric operator 
the rotation invariant operator 
the rotation skew-symmetric operator 
the inverse rotation skew-symmetric operator 
a general or required rotation 
three-dimensional Euclidean space, also serving as a model for direct or reciprocal space 

hand-inverted three-dimensional Euclidean space 
the exponential function, defined as a power series 
composition (action of one operator after another) 
the correspondence or inner product 
used only to specify the size of matrices within the text 
a general mapping between sets 

The function £ is even with respect to both of its argu- 
ments, and the function 69 is odd with respect to both of its 
arguments. The function 2- is even with respect to its ar- 
gument, but is called invariant because it does not depend 
on the angle of rotation,/e. The term V is variable and 
related to the particular application. The terms in (2.1) 
are general: for example, they match rotational opera- 
tors in (3.6), but also match the scalar terms in (4.7) and 
(1 1.7). It is the matching of the behaviour (represented by 
the symmetries) of the right-hand side of (2.1) (represent- 
ing the mechanics of our goniostat) to our specific experi- 
mental requirements represented on the left-hand side that 
forces our method to work. The simplifying power of this 
symmetry-based decomposition is the principal theme of 
this paper. 

3. Algebraic representation by rotation 
operators 

Algebraically, we can represent a rotation by an operator 
which has the form (see Table 2 for notation) 

~:= ~(g, Le). ~3 --, ~ 3  (3.1) 

in which the specification of the sense of rotation as the 
angle increases is encoded by the use of a signed axis, 1~. 
This equation reads: the operator I~, which is a function 
of 1~ and of Le, maps Euclidean space autonomically (into 
itself). In general, the restriction to operation in Euclidean 
space is unnecessary, but it helps to focus the present dis- 
cussion. In many circumstances, a matrix is a suitable 
representation of the action of an operator (e.g. Goldstein, 
1980, p. 135). Some 3 × 3 matrix representations are dis- 
cussed in §5, but the abstraction of operator notation al- 
lows a clearer view of the structure of the equations. 

All of the properties of a system specific to a freedom 
of rotation about an axis must be re_presentable as func- 
tions of that axis, representable by E, a free axis. When 
this axis is used as a passive algebraic entity (a right- 
multiplicand) which can be left-multiplied by an operator, 
or when it is used as an operator to right-multiply another 
form, it is properly a representation of an axis in the form 
of a left-acting operator, El, called just axis for short. It 
can equivalently be used actively as a left-multiplier or 
passively as a left-multiplicand, in which it is properly a 
representation of an axis in the form of a right-acting op- 
erator, IE, which I choose to call sixa (axis backwards). 
The forms El and [E are conjugate, and their notation, like 
the 'bra-ket' notation of Dirac (1958), is chosen deliber- 
ately to emphasize their equivalence and symmetry; ev- 
ery correct equation using them reads correctly in either 
direction. In some geometrical representations the two 
forms appear very different in function, but this is more a 
reflection of an inadequacy in the geometrical representa- 
tion than of a true functional difference between El and IE 
(see §13). With conventionally arranged notations, com- 
putational forms of El and of IE are normally represented 
by column and row vectors respectively. However, one 
should not feel too strongly attached to these specific and 
restrictive computational representations. 

All of the properties of a system specific to one par- 
ticular angle of rotation can similarly be represented by a 
single algebraic symbol, which is skew-symmetric rela- 
tive to that angle. The symmetry of 3.1 is such that we 
can start with one of two opposite forms, say E_[E and 
E-[E. The double occurrence of the name of the rotation 
axis in the rotation operators is to assert that this nota- 
tion comprehends the potential for half-angle factoriza- 
tion, even through a construction based on reflections. 
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Thus the existence of non-autonomic 'half-operators' like 
EJ and [-E (so that, perhaps, EjE = EJ o [E; [E: 1153 

~.3,  E j : ~ 3  ~ IE3) is acknowledged and implied, 
though apart from IE and El we shall neither use nor 
define them here. But the notation also declares that a 
metric-invariant differential structure exists for the oper- 
ators (see §13); even if a metric-dependent representation 
is used for, say, El, one can think of one of the symbols as 
being in a multiplying position and the other in a dividing 
position, so that any potentially variable ' length' attach- 
ing to a representation of El cancels completely and the 
operators remain strictly idempotent. In other words, the 
two occurrences are mutually contravariant. Indeed, ge- 
ometrically, they are duals (see § 13). This property is not 
always immediately obvious in computational represen- 
tations of them. In fact, a little further thought will show 
that even the half-operators themselves must each con- 
tain the same double occurrence, so that in most compu- 
tational representations of the full operators, a quadruple 
occurrence is seen. 

I have chosen to call E_[E the rotation skew-symmet- 
ric operator and E]_E the inverse rotation skew-symmet- 
ric operator. Either can be used as generators of rota- 
tions, by making use of the power-series definition of the 
exponential function [of Goldstein (1980), equation (4- 
77), p. 157; or Misner, Thorne & Wheeler (1973), equa- 
tion (41.17), p. 1141] 

1~ = exp( /eEjE) ,  (3.2) 

in which/e ,  being just a real number, can commute with 
E_[E. The skew-symmetric operator E_[E itself must neces- 
sarily behave in the manner of a classical imaginary (like 
i = v / -~) ,  in order to maintain the necessary unit nor- 
malization (i.e. non-scale-changing property) of the ex- 
ponential. The skew operators EJE and E[E must there- 
fore also repeat on every fourth power. It thus helps to 
expand our notation into a set of five operators in addi- 
tion to the identity, whose compositional products satisfy 
the following system of equations: 

E E / 
E;E 

EIE 

o ( I  EIE E[E E]E E]E EIE ) 

I EIE E[E E[E 
EIE EIE 0 0 0 

_ EIE 0 ETE EIE EIE 
- 0 EI E EIE EIE 

EIE 0 EIE E.IE 
EIE 0 E_I'E EIE 

EIE 
0 

E;E 
ETE 
EIE 
EIE 

(3.3) 

Thus the operators I, E]E and EIE are idempotent, whilst 
E]'E is equal to all of its odd powers, and all of its even 

powers are EIE. The invariant 

EIE - El o IE (3.4) 

and the symmetric 

EJ_E = I -  EIE (3.5) 

are even with respect to 1~ (representable by either E or 
t~) but E[E, which depends on the sense of rotation, must 

be specifically related to I~. Detailed computational rep- 
resentations of these operators as 3 × 3 matrices are given 
in §5 and a simple diagram giving an intuitive description 
of the action of the major operators on a general vector is 
displayed as Fig. 3. 

Throughout this paper, we distinguish between skew- 
symmetry, which is used to describe terms having the 
same symmetry as does a rotation through a right angle in 
Cartesian-Euclidean space, and anti-symmetry, which is 
used to describe terms having the same symmetry as a ro- 
tation through half of a revolution in Cartesian-Euclidean 
space. The conventionally defined symmetries of matri- 
ces used to represent rotations are higher than those of the 
rotations they represent, and are not generally used here. 

Formally, it is I and .]-. (which embodies the skew- 
symmetric properties) which are the most fundamental 
quantities from which all of the others (including axes and 
sixas) derive. However, the links between the various op- 
erators are so strong that for all practical purposes we can 
derive our computational forms from any defining subset. 

From the relations above, which imply trivially that 

(E]E)° = I, that (E]E)2 = E ~  = - E I E  and that 

(EJ'E) '~+2 = - ( E [ E )  n for all positive integers, n, (3.2) 
expands into 

15 = ( I -  E[E) + E]'E sinZe + EIE cos/e  
(3.6) 

= EIE + EjE s in /e  + E]E cos/e,  

Fig. 3. An indicator diagram for the rotational operators. This shows 
how the invariant operator .1. projects its vector argument onto the 
line of stasis, and that the skew operators .]-- and .]_. project their vec- 
tor arguments onto the orbital plane with an attendant right rotation. 
The symmetric operator "i" similarly projects onto the orbital plane, 
but with no attendant rotation, whilst the antisymmetric operator "T" 
projects with a rotation of half a turn. The identity operator, I, marks 
the unaltered operand in its original position. 
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which has the same form as the behavioural decomposi- 
tion of (2.1). 

It is also useful to define a correspondence, or inner, 
product, - ,  whose action between rotational operators is 
specified completely by 

EIE 

+3 +1 0 - 2  0 +2  / 
+1 +1 0 0 0 0 

_ 0 0 + 2  0 - 2  0 

- 2  0 0 +2  0 - 2  ' 
0 0 - 2  0 +2  0 

+2 0 0 - 2  0 +2  

(3.7) 

which declares the ranks of the operators and the de- 
gree to which their actions correspond. It also exposes 
the two necessary antisymmetries: EJ_E - - E ~  and 
ErE = -E-q.E. If the result on the right-hand side is 0, 
the operators are regarded as independent or orthogonal; 
if it is 1, they correspond in a one-dimensional subspace 
corresponding to the line of stasis; if it is 2, they corre- 
spond in a two-dimensional subspace corresponding with 
the orbital plane; when it is 3, they correspond completely 
- a result which obtains only if both are the identity op- 
erator. The minus signs indicate the presence of a mutual 
antisymmetry in the sense defined above. One example 
of a computational representation of the correspondence 
product is given at the end of §5. 

The correspondence p r o d u c t , . ,  can also be used be- 
tween two axes or between two sixas, when it reduces to 
the ordinary scalar operation of sixa on axis: 

11.21 ~: 12-11 ~ 1121 ~ 1211, (3.8) 

which often allows it to be eliminated (or incorporated) 
by trivial rearrangement, as in, for example, (4.13). 

The derivative of the rotation operator with respect to 
the angle of rotation is given by 

= ErE cosZe + E-~ sinZe 

= EJE , 

(3.9) 

whose 3 × 3 matrix representation is given in §7. This 
gives a natural interpretation of the function of E.[E, which 
otherwise seems rather abstract. 

The derivatives of the rotation operator with respect 
to the direction of the axis of rotation are not normally 
needed in diffractometric goniometry, and are not dis- 
cussed in this paper. However, the derivative of a rotated 
vector with respect to a small-angle vector representation 
is used in calculations of the effects of mosaicity, but an 
extra new notation ([-J and [-]) is needed which will be dis- 
cussed in a later paper (Thomas, 1990b). Although the 

new operators introduced in this section are derived with 
special reference to rotational calculations, most of them 
have other applications. For example, "l" is used in cal- 
culations of X-ray beam polarization (Thomas, 1990b), 
"1" in calculations involving detector geometry (Thomas, 
1990a) and .]'- in calculations of the fluorescent scattering 
from a foil (Thomas, 1990a). 

4. T h e  t h r e e - c i r c l e  c r y s t a l - g o n i o s t a t :  
(I) a n a l y t i c  s o l u t i o n  

We turn now to the important practical calculation of the 
setting-angles of a three-circle crystal-goniostat using the 
notation outlined above. To avoid confusion, we distin- 
guish here between the crystal-goniostat and the detector- 
goniostat on a diffractometer, so that what is convention- 
ally called a four-circle diffractometer is in reality almost 
certainly a machine with a three-circle crystal-goniostat 
and an independent one-circle detector-goniostat. Al- 
though the following account is cast in terms of the three- 
circle crystal-goniostat, it is equally appropriate for any 
other type of goniostat. Two-circle crystal-goniostats and 
one-circle crystal-goniostats are included implicitly, be- 
ing reduced forms in which the third axis, and the second 
and third axes respectively are missing; the correct work- 
ing for them is to be obtained by striking out those parts 
which have become superfluous. Analysis of the three- 
circle crystal-goniostat leads to the most general setting 
equations capable of unique solution, and the extent to 
which, say, a four-circle crystal-goniostat can be charac- 
terized is left as an exercise for the reader. 

The axes of a goniostat are numbered in the order that 
one would meet them going from the crystal to the base- 

Fig. 4. The kappa-bracket goniostat of an Enraf-Nonius FAST system. 
The kappa axis is inclined at 50 ° to the vertical phi and omega axes, 
and the positive sense of rotation for all of the axes is clockwise as 
seen from above. For a long time the analysis of kappa brackets and 
of Eulerian cradles was handledquite differently, as if they were not 
related to each other. Geometrically they are entirely equivalent, 
and differ only in the relative orientations of their axes and in the 
region of orientational space accessible to them. The general equa- 
tions given in §4 apply equally to all three-circle crystal-goniostats. 
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&v 
L¢ 

vL2, vL3 
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/20 
d 
82 

d2 
COS- 1 

tan- 1 .f k si./. 
t k c o s J  

k 
,/ 

['~ "] 
[.,.[ 

Table 3. Symbol table for §4 

a very small number 
the angle of the n axis 
the angle of the w axis 
the angle of the ¢ axis 
operators performing differentiation with respect to goniostat angles 

the chi axis of an Eulerian cradle 
the kappa axis of a kappa-bracket goniostat 
the omega axis both of an Eulerian cradle and of a kappa-bracket goniostat 
the phi axis both of an Eulerian cradle and of a kappa-bracket goniostat 
the first goniostat axis, usually 
the second goniostat axis, usually X or I4 
the third goniostat axis, usually f~ 
the 'zero angle' of the second goniostat axis 
a rotation generated by a goniostat 
a constant subtrahend used in solving for/2 in the general 321 goniostat 
a constant divisor used in solving for 52 in the general 321 goniostat 
the principal value of the inverse of the cosine function (result on [0, 7r]) 
the principal value of the double-argument inverse tangent function (result on [-Tr, 7r[) 
a positive constant allowing the generalization of the definition of tan- 1 and cot- 1 
the square root 
can be represented by 
the computational assignment operator 
missing argument of a function 
an interval closed at both extremities 
an interval closed at the lower extremity, but open at the upper one 

plate. This is convenient because it has become con- 
ventional in the analysis of  the geometry of  area-detector 
cameras and diffractometers to work as much as possible 
in a system in which the crystal is taken as the origin. 

Thus, for a normal Eulerian.cradle, ~ is the first axis, 
i; X is the second axis, 2; and f2 is the third axis, :3. For a 

kappa-bracket* goniostat as used on the Enra f -Nonius t  
CAD-4  diffractometer and on the Enraf-Nonius  FAST 
system (see Fig. 4), ,i> is the first axis, I(  is the second 
axis, and t2 is the third axis. We can represent the ro- 
tation produced by the goniostat by the rotation operator 
(notation as in Table 3) 

d = ~i:ii, (4.1) 

using a natural extension of Hamilton's  multiplicative$ 
rule for the combination of  rotations (Misner, Thorne & 
Wheeler, 1973, §41.1, p. 1136). The rotation that we re- 
quire the goniostat to produce can be represented by an- 

* The kappa geometry was invented by Siem Poot of Enraf-Nonius, 
and was protected worldwide by patents (Poot, 1972). 
t B.V. Enraf-Nonius, RSntgenweg 1, 2600 AL Delft-Holland, The 
Netherlands. 
:~ According to Gray (1980), Lagrange gave additive formulae for 
infinitesimal rotations in 1788, and Rodrigues noted in 1840 that the 
infinitesimal motions can be integrated to give the correct form for finite 
rotations. But the same article makes it seem curious that the connexion 
was not noted more clearly by Euler, who is said to have been famil- 
iar with the products of orthogonal matrices, which he used to express 
successive rotations in his number-theoretical research. 

other rotation operator, 1~, and therefore we wish to know 
the solution for the three axial a n g l e s : / 1 , / 2  a n d / 3  when 

I ~ = G .  (4.2) 

An axis is invariant under rotations about itself, which 
yields an extremely valuable eigenequation: 

I~E I = E I . (4.3) 

Thus, knowing that 1~ will be decomposed into the form 
of (~, we can uncouple its dependence on /1  by allowing it 
to act on the first axis, 1, or, equivalently, back-operating 
the first axis onto it: 

1~11 = 3 2 i l ]  = 3 2 1 1 .  (4.4) 

It is normal to use a signed axis here, though the equa- 
tion is equally true with a free one. Similarly, the opera- 
tion of a sixa is also unaffected by rotation about its cor- 
responding axis, which is represented by the reciprocal 
eigenequation: 

I E - IEt~, (4.5) 

so we are also able to uncouple the dependence of  equa- 
tion (4.4) o n / 3  by the action of  13, giving 

131~11--13:i:ill--13:ill. (4.6) 

It is, equally, normal to use a signed sixa here, though the 
equation is also valid with a free one. This equation can 
be solved wi thou tknowing  the internal structure of  the 
rotation operator, 2, in any greater detail than has already 
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been described in §3. Thus, we can expand (4.6) into the 
form of (2.1): 

= ]3 [2[2 + 2-[2 s in/2  + 2_[2 cos/2] 13Ell 11 
(4.7) 

-1321211 + 132_1-211 sin/2 + 132_[211 cos/2. 
Every goniometric equation in diffractometry, and prob- 
ably everywhere else, can be cast into this form. 

There are several ways to solve this equation. The sim- 
plest method, which is illustrated in Fig. 5, proceeds in 
two steps: we first observe that the constant factors mul- 
tiplying the trigonometric functions in (4.7) can be repre- 
sented as 

132_[211 = v/Iz2J-2112 ÷ 132-[2112 cosA2o (4.8) 

and 

132_[211 : V/132_[2112 + 132_[2112 sinA2o, (4.9) 
where 

/2o = t a n - l {  132j-211 } ,J" 2j'2 } 1, (4.10) 
1321211 - tan-ll31,2j_2 

is a scalar constant of the goniostat. Indeed, this is an an- 
gle defined without either a protractor or a metric. Equa- 
tion (4.10) is the first equation which demands that a 
scalar magnitude can be attributed to the forms 132.]-211 and 
]32_[211 , though it still cannot demand that they themselves 
are necessarily scalar quantities, because the inverse- 
tangent function could itself be constructed in such a way 
as to make that attribution. However, in all normal repre- 
sentations, 132.]-211 and 132_[211 are just real numbers. We 
have, of course, assumed that the square root of an op- 
erator can be taken, but this would not normally be re- 
garded as a particularly contentious operation. Equation 
(4.7) then reduces to an equation containing the cosine of 

Fig. 5. The solution of equation (4.7) for/2o and lbr the two possible 
values of/2. This diagram can also be drawn as lines intersecting 
a sine wave, but the construction shown is simpler and exposes the 
nature of the angles more directly. The distance from the centre of 
the bold chord equals 131~ 11 - 1321211, and it dictates the two solutions 
(+ and - )  for/2. These are always symmetrically arranged about 
the so-called "zero-angle',/2~1. 

the difference between the solution,/2, and/20: 

1 3 E l l -  1321211-- V/1321-2112 + 13212112 c o s ( / 2 -  "20), 

(4.11) 
which has two possible solutions given by 

1 (  131~11- 1321211 ) .  (4.12) 

Thus we have paradoxically been able to calculate that 
part of the required rotation, 2, which is most deeply em- 
bedded in the overall expression for the rotation given by 
(4.1) by virtue of the power of the operators 13 and 11; 
whereas it might appear that that quantity in the middle 
of the equation would be the last to be evaluated. How- 
ever, having found it, it is then an elementary matter to 
determine the two flanking quantities, i and 3. For steric 
reasons, and because of the possibility of the failure of 
the equations if the first axis and the third axis turn out to 
be parallel, we next work out the third axis, which is the 
one attached to the baseplate of the diffractometer. This 
is achieved by picking out the skew-symmetric and sym- 
metric parts of the required rotation by matching them 
with those of any rotation which could be produced by the 
third axis acting on the known rotation of the second axis, 
having uncoupled the action of the first axis, and gives an 
immediate solution: 

/3 -- t a n - i  ({3J-3} :~11 " 1~1[ ) 3 1 3  

313,  = tan-111~,{313}211 (4.13) 

- t a n - l [ l ~  313j1~1[. 

Its derivation and structure can be seen from (3.6) and 
(3.7) which show that 3_[3 • :3 = 2 s in/3  and 3-[3 • :3 = 
2 cos/3, which is not invalidated when the operators are 
made to act on the axis, 211. The rearrangement of the 

:hi 

313~q 

3J3:~ 
313Eq 3J3~11 

Fig. 6. The solution of equation (4.13) lor/3. The various components 
resulting from the expansion of equation (4.13) are displayed in the 
manner of the indicator diagram. Fig. 3. The term 1~ I1 differs from 
~:f. 1[ = :211 only in the application of the unknown rotation. :3. The 
term :211 can be regarded as a constant when solving for/3, so much 
of the structure of the complete equation need not be drawn. 
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equation to eliminate the correspondence product makes 
use of the fact that the terms it separates are both axes, so 
the product is the same as the conventional scalar action 
of sixa on axis [see (3.8)]. A graphical decomposition of 
the equation is shown in Fig. 6. 

If the action of the second-axis rotation is to bring the 
first axis into alignment with the third, this equation fails 
because all of the rotationally variant components vanish. 
When this happens (which it often does) the third angle 
can be set independently: when coded as a computer pro- 
gram, the value to which L3 should be set if this equation 
fails is passed as an argument to the solving subroutine; 
the failure of (4.13) is then of little further consequence. 
When we come to solve the first-axis angle, we could, 
because of the symmetry of (4.6), write an equation ex- 
actly analogous to (4.13), in which we compare 131~ with 
13:ilj-X and 13:ixJ_l, but this would just compound any fail- 
ure to solve for the third axis with certain simultaneous 
failure to solve for the first. This is not a helpful out- 
come, since it can only be resolved by the use of another 
equation reserved specially for the purpose. The coding is 
simplified if, instead, we work out the first-axis angle by 
specifically undoing the (now known) rotations produced 
by the second and third axes, and matching with the skew- 
symmetric and symmetric components of rotations which 
could be produced by the first axis, 1. This is expressed 
by the following equation for LI: 

_(~" 1.]-1}., ~ ] ~ ) 1 , 1 . ] _ 1  (4.14) L1 : t a , - i  ~, 

which can never fail. Its structure can also be seen from 
(3.6) and (3.7) which show that 1_1-1• 1 = 2sinL1 and 
111• 1 = 2 cosL1. As mentioned earlier, L20, specified 
by (4.10), is a constant of the goniostat, as indeed are the 
subtrahend 

s2 = 132121 I, (4.15) 

and the divisor 

d2 = V/132_1-2112 + 13212112, (4.16) 

which occur in (4.12). This means that at run time, per- 
haps during high-speed data collection, after L2o, s2 and 
d2 have been calculated as constants, the complete solu- 
tion of the three-circle crystal-goniostat can be expressed 
by just three equations [(4.12), (4.13) and (4.14)]. How- 
ever, even this is not the simplest known implementa- 
tion of the solution of the general case. [See §I1, where 
(11.15) combines the function of (4.10) and (4.12) us- 
ing only one inverse tangent function, and the Appendix 
where the close relation between the equations is given 
explicitly.] It turns out in practice that these equations can 
be coded most satisfactorily using ordinary 3 x 3 rotation 
matrices. 

This solution of the three-circle crystal-goniostat in the 
general case has been reworked from the released com- 

puter code by Diamond (1990) using a considerably more 
complicated four-dimensional half-angle notation, and re- 
sults in equations rather different from those used here. 
Diamond claims that his equation (81) reproduces (4.12) 
(personal communication). 

5.  S t a n d a r d  3 x 3 r o t a t i o n  m a t r i c e s  

The set of 3 x 3 orthogonal (i.e. real unitary) matrices with 
positive determinant provide the most natural and direct 
computational expression of the rotation operator. Their 
exact form can be deduced from (3.6) without ambiguity. 
We first represent the (left-operating) axis by a column of 
three real numbers, l, m, n: 

(/) 1 (.) 
/,/ 

(5.1) 

and its conjugate (right-operating) form, or sixa, must 
then be a row of the same numbers: 

1 
I n ~ ( /  m n ) = ~ ( A  # ~ ) .  (5.2) 

The equivalent forms in Diamond's quaternion notation 
[A = l s in  (Le/2), # = m s i n  (Le/2), l,, = n s i n  (Le/2) for 
the vector part, and o = cos (Le/2) for the scalar part]* 
are also given so that the structure of the decomposition 
of the half-angle form of the rotation matrix can also be 
seen. [See Diamond (1988), equation (7) for the full ro- 
tation, and the much less well known equation (27) for 
the half-rotation.] It should be noted that these numerical 
representations lack the generality of the operator nota- 
tion upon which they are based, since they depend on the 
handedness and scale of the coordinate system in use. 

We insist that the action of the sixa on the axis, in inner 
product formation, is to generate an identity operator, the 
scalar unit multiplier: 

A2 ~2 /j2 
lEE I ~ l 2 + m 2 + n 2 = + + 

- 1 - o .2 
= 1. (5.3) 

With this definition, l, m, n can necessarily be interpreted 
as direction cosines, and this is, indeed, a common nota- 
tion for them. The alternative composition, of axis acting 
on sixa, in outer product formation, does not produce an 
alternative multiplicative identity operator, but a symmet- 
ric operator specific to the line of the axis, which must 

* Goldstein (1980, footnote p. 153) seems to think that these parame- 
ters should be named after Euler. However, although Euler ( i 775b) did 
use a tetravariate notation, it was equivalent to l, m, n and cos/e of the 
present paper, and thus did not involve half-angles. Gray (1980) points 
out that a half-angle tangent formalism was published first by Rodrigues 
in 1840, though Gauss knew of it in 1819; it would therefore still appear 
that Hamilton's announcements of 1843 and 1844 are the first clear ac- 
counts leading to the present-day sine--cosine half-angle formulation. 
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therefore be a representation of the rotationally invariant 
operator: 

/2 m l  n l  ) 

EIE I m  m 2 ,',-, n m  

In m n  n 2 

_ 1 ( A2 # A  

- -  1 - 0"2 A #  # 2  \ Av # v  

/ / #  . 

/]2 

(5.4) 

Apart from an ambiguity of sign, there is only one skew- 
symmetric 3 × 3 matrix having properties satisfying the 
systems (3.3) and (3.7), which is 

0 - n  m )  
ERE,-., n 0 - l  

- m  / 0 

1 / 0 - v  
-- ~ u 0 

0 

(5.5) 

whose square: 

/2 _ i 
I m  

In 

1 
1 - o .2 

m l  n l  ) 
m 2 -- 1 n m  

m n  n 2 -- 1 

cube: 

A 4- 0"2 _ 1 #A 
A# p2 + 0"2 _ 1 

AV #V 

l J l Z  

v2 + 0"2 _ 1 

(5.6) 

(On) - - m  

E]_E ~ - n 0 

m - l  

1 ( 0  v 
-- - v  0 A , 

0 

(5.7) 

and fourth power: 

1 - 12 

E_[E ,,~ - l m  

- l n  

1 

- m l  - n l  ) 

1 - m 2 - n m  

- r a n  1 - n 2 

1 -- 0"2 

1 - a 2 - A 2 

- A #  
- -At /  

- # A  
1 - 0"2 _ #2 

- - p / ]  

- -~ ' #  

1 - 0"2 _ u2 

(5 .8 )  . 

all correspond to previously specified components of ro- 
tation operators. The antisymmetries E.LE = -ETE and 
ErE = -E]_E are particularly clear in this component rep- 
resentation. It will be noticed that in the quaternion for- 
malism, all of the operators contain a prefactor whose de- 
nominator vanishes for small rotations, so their numeri- 
cal evaluation in that form can hardly be recommended; 
however, analytically they are perfectly well behaved. No 
such problems arise with the full-angle formalism. 

The sum of rotationally invariant and symmetric oper- 
ators does produce an alternative multiplicative identity 
element, representable by the unit matrix 

1 0 O )  
E I E + E J E = I , - ~  0 1 0 , 

0 0 1 
(5.9) 

whose action is readily seen from (3.6) to be the same as 
that of a null rotation. Indeed, this equation has already 
been used in the reduction of the exponential formulation 
of the rotation operator into the three-way split of (3.6). 

With these definitions, we can reliably construct the 
standard 3 × 3 rotation matrix as (2 m n)(o am) 

~ I m  m ~ n m  + n 0 - l  

In m n  n 2 - m  l 0 

1 - l 2 - m l  - n l  ) 
+ - I r a  1 - -  m 2 - - n m  cosZe 

- I n  - m n  1 - n 2 

- 1-0.2 A# #2 v# 
At,, # v  v 2 

+ 20. v 0 - A  

- IZ  A 0 

20" 2 -- 1 
+ - -  

1 - 0"2 

1 - 0"2 _ A2 - # A  - p A  '~ 
× - - A p  1 -- 0"2 _ 122 /~p ) . 

- -AV --~ZU 1 -- 0"2 _ V2 

(5.10) 

sinLe 

When summed, the half-angle formulation here reduces 
rather laboriously to the well known form [e.g. equa- 
tion (7) in Diamond (1988), or equation (4-67) in Gold- 
stein (1980)], in which the components of different sym- 
metry are not clearly separated. Here. we are using 

2o,,/1 -0"2 for sinLe and 20" 2 - 1 for cosLe which is 
possible since 0. = cos (Le/2); this enforces consistency 
of notation with the standard quaternion form, in which 
neither the angle of rotation nor, indeed, any obvious be- 
havioural symmetries appear. 

These matrix representations assume Cartesian right- 
handed axes, and are therefore less general than the oper- 
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ator notation which does not depend on either a metric or 
a component representation. 

Inspection of the system (3.7) shows that in a 3 x 3 
matrix representation, the correspondence, or inner, prod- 
uct denoted by • is executed computationally by align- 
ing two matrices element for element, as if laying one 
on top of the other, and then summing the products of 
overlapping, or corresponding, terms. It can therefore be 
computed slightly faster than the compositional product o, 
which becomes an ordinary matrix multiplication in this 
representation. 

6. The three-circle crystal-goniostat: 
(II) iterative numerical solution 

It is rather unfortunate that on an area-diffractometer the 
crystal-goniostat is used more often in a position where 
(4.13) fails than when it succeeds. This is because the phi- 
and omega-axes, 6, ~, are so often parallel. For some 
purposes this is of no consequence because the omega- 
angle,/w, can be set to a value which avoids collisions 
between the omega-block or chi-circle and the detector 
whilst allowing convenient access for the crystaliogra- 
pher. Then the phi-value,/¢, can be determined by (4.14). 
If data are to be collected using the rotation method, either 
/w or/C, and sometimes both in synchrony (but rarely/e;) 
will be incremented at a steady rate, so it is not necessary 
continually to re-evaluate the goniostat angles using the 
equations of the last section. However, there are occa- 
sions when it is necessary for the goniostat to be swung 
in a well controlled manner through the position at which 

becomes parallel to f2. The most important example 
of this, precession motion, is presented in §9. It turns out 
that the method of Raphson (1690) is particularly suitable 
for handling this situation. Indeed, it is hardly necessary 
to know that we are dealing with rotations or goniostats: 
we need merely to apply Raphson's method mechanically 
in a fashion designed to drive the operator, G, describing 
the rotation produced by the goniostat into coincidence 
with the operator, ]~, describing the required rotation. To 
do this, we need to know the first derivatives (Jacobian) 
of G with respect to the three goniostat angles. These are 
represented by the following three equations: 

e = i), 

vLe = 

(6.1) 

(6.2) 

(6.3) 

These equations must be calculated at the current position 
of the goniostat. The three derivatives are then substituted 
into the following equation: ('1/ ("/ [ °) 

/2 +--- /2 -~- ~ 2  d II ( ~ À d ,  
L3 z3 vL d 
a t a 

which is a trivariate extension of Raphson's method. The 
reference comments under the braces are the standard 
modem notation for the method of Newton (1669) and 
Raphson. Formally, the product of the inverted square- 
matrix and the column-vector of derivatives is a general- 
ized inverse of a row-vector of derivatives. In practice, 
the equation is best solved by the analytic form of the 
conjugate-gradient algorithm (Hestenes & Steifel, 1952; 
Thomas, 1989, §14), even though the square-matrix is 
only 3 × 3 positive symmetric. This is because the ma- 
trix becomes singular if any of the goniostat axes (usu- 
ally ~ and ~) become coincident: the conjugate-gradient 
algorithm handles this in a very smooth fashion, divid- 
ing any incremental change equally between the aligned 
axes. However, although its behaviour with exact arith- 
metic is well defined, rounding errors can cause a pertur- 
bation when this singularity occurs, in which the differ- 
ential rotations produced by the coincident axes may be 
ill-conditioned. This uncontrolled behaviour can be stabi- 
lized completely without materially altering the accuracy 
of the result by adding a very small multiple of the iden- 
tity matrix, eI, to the matrix to be inverted. In practice, 
we use e = 0.01. 

Equation (6.4) is the preferred method of controlling a 
goniostat undergoing a small-angle precession motion, in 
which the C-axis and the w-axis are often in close align- 
ment (see §§8 and 9). 

7. The derivative of a standard rotation matrix 
with respect to the angle of rotation 

The derivative of the rotation operator expressed as a 3 x 
3 rotation matrix is obtained by substitution of (5.5) and 
(5.8) into (3.9), and is: 

0 - n  m )  
0 I l 

- m  l 0 

l -- 1 m l  
+ l m  rn z -- 1 

lTt Tt~n 

2a 2 - 1 { 0 
--- ~ // 

- #  

Q A + 0 -2 -- 1 

cosLe 

,a ) 
n m  sin/e 

n 2 - 1 

- u  # ~ 20" 
0 -A ) + 
A 0 v / i  - a2  

/.,tA uA ) 
#2 + 0.2 _ 1 up . 

#u u 2 + a 2 - 1 

vz c , + - 

[S'(a)] -1 

vLld) 

S(a) 

(6.4) 
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~3 
IB 
X 
xIx 
xjx, xix 
P 
PI 
P_J]P, PiP 
N 
IN, NI 
S 
IS 
/p, Z~c, Z/3 
Z/3o 
LXo 
~,~,~ 
O, 
dr 
dx 
sf~ 

8 X 

IR 
77,, 
4----.-,- 

X 

sgn 

II 
A 

Table 4. Symbol table f o r  §8 

the beam or virtual beta axis 
I3 as a right-acting operator 
the virtual chi axis 
the rotation invariant operator derived from :~ 
the skew and symmetric operators derived from 
the virtual rho axis 
15 as a left-acting operator 
the skew and symmetric operators derived from 15 
the normal to a reciprocal-lattice net plane to be brought into coincidence with 15 
lq as right- and left-acting operators 
the swing axis 

as a right-acting operator 
the angles of the/3XP virtual goniostat 
the 'zero angle' in the solution for the third angle of the/3Xp virtual goniostat 
the 'zero angle' in the solution for the second angle of the/3XP virtual goniostat 
rotations produced by the/3Xp virtual goniostat 
a constrained rotation, also used as the orientation of the centre of a precession motion 
a constant divisor used in solving for//3 in the/3XP virtual goniostat 
a constant divisor used in solving for/X in the virtual/3Xp goniostat 
a constant subtrahend used in solving for/'/3 in the/3XP virtual goniostat 
a constant subtrahend used in solving for/X in the virtual/3:~p goniostat 
the set of real numbers 
the set of whole numbers 
becomes 
a specific mapping between elements of sets 
a general algebraic quantity 
the signum: IR ~ 7Z; x H sgn(x) function: sgn(x) = 1, x > 0; - 1, x < 0; 0, x = 0 
the sign of the projection of lq onto a signed representation of 15 
is parallel to 
the vector cross product 
the absolute value 

Thus the simplicity of (6.4) is somewhat deceptive; the 
number of machine operations to set it up and to solve it is 
very large. However, its behaviour is impeccable: indeed, 
inspection will show that there is no case of practical im- 
portance in which the trajectory of a goniostat controlled 
by it is ill defined. It is also rather more attractive to the 
computer programmer than the equations of §4 which re- 
quire the sign of the second-axis angle to be evaluated 
carefully before attempting the solution, but it would not 
be appropriate to use it when the highest computational 
speed is required. 

8. The construct of a virtual goniostat 

In the previous two sections we have assumed that the 
crystallographic requirement could be specified by a re- 
quired-orientation operator. This is not always true, and 
one of the most important counterexamples occurs when 
calculating how to bring a zone axis into alignment with 
the incident beam. The desire to bring a plane normal 
into alignment with the beam, in either the parallel or the 
anti-parallel sense, allows a degree of freedom, namely 
rotation of the crystal about the beam, which means that 
we cannot immediately specify the required-rotation op- 

erator, 1~. A very satisfactory resolution of this indetermi- 
nacy is achieved by inventing the construct of a 'virtual 
goniostat'. The idea of the virtual goniostat is to constrain 
the motion of the crystal to those positions that the virtual 
goniostat is capable of reaching. In this particular case. 
we invoke the use of a /3~p goniostat. The first axis, 15 
(rho) (see Table 4 for list of symbols), 

i ~ 15, (8.1) 

is often made to correspond with the real ¢ axis, and can 
be in any orientation which is not parallel to the incident 
beam. The second axis, :~ (chi), is defined to be perpen- 

dicular both to 15 and to the beam, I3: 

2 '  :£ II BA15. (8.2) 

and the third axis is 13 (beta), defined to be parallel to the 
beam: 

3 ,  B. (8.3) 

This definition of the/3kp goniostat guarantees that the p 
axis, 15 , can be brought into alignment with the beam, or 
/3 axis. If we were to spin the p axis, the plane normal, 

N, which is required to be brought into coincidence with 
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the beam, would sweep out a cone, and the cosine of the 
semi-angle would be 

INPI = XINPI, (8.4) 

where the scalar constant, ~, determines whether the 
plane normal is aligned in a parallel or anti-parallel sense 
with respect to a signed representation of the p axis: 

X = sgnlNP I. (8.5) 

The first step to bring the plane normal into coincidence 
with the beam is to rotate the virtual X circle so that the p 
axis subtends the same angle to the beam axis as it does to 
the normal of the plane to be observed. This can be done 
by setting the two cosines equal: 

INPI] = IBXPI. (8.6) 
The sign of the the cosine term, INP[, is immaterial here, 
since the plane can be aligned with the beam in either ori- 
entation, but on a real diffractometer we may choose the 
sign of IBXPI, which is the cosine of the angle between 
the p axis and the beam. On the FAST system, this is usu- 
ally chosen to be positive, as reflected by (8.6). Equation 
(8.6) has the same form as (4.6) and its solution follows 
the same route. We define the constant subtrahend of the 
virtual goniostat as 

sx = IBXIXPI, (8.7) 

the constant divisor of the virtual goniostat as 

d x = v/IBX_[XPI 2 + IBXJ_XPI 2, (8.8) 

and the zero-angle of the second axis of the virtual gonio- 
stat as 

-1 I " / x j x  
ZXo : t an  IB~xj_x~PI. (8.9) 

This allows us to evaluate the setting o f / x  which would 
bring the plane normal into alignment with the beam as 

_~ dx ' 

where the choice of plus or minus is made so that we get a 
value of Ax which does not cause the goniostat to collide 
with the detector. In practice, on the FAST system, with 
the normal definitions, this would mean that LX would be 
negative. In addition, the value of AX is constrained to 
lie on the interval [-Tr, 7r[. The range of/x values which 
can be achieved on a real diffractometer is somewhat lim- 
ited, because the goniometer head will ultimately foul the 
collimator, backstop or the detector. On the FAST sys- 
tem, we can accept a value of Zx as low as - 6 3  ° before 
any problems arise, so there is a cone of semi-angle 27 ° 
with respect to the crystal containing normals to planes 
which cannot be observed. This restriction is acceptable 
in practice because the geometry of planes whose normals 
lie within this cone can always be examined implicitly, 
but reliably, by examining principal planes whose nor- 

mals lie within s i n - l v / f f / 3  ,,~ 55 ° of the p axis [see 
Thomas (1982a), §5.3.3, p. (5.9)]. Once ¢X has been Set, 
we can bring the plane normal into alignment with the 
beam merely by rotating the p axis. Once the rotation 
operator, J(, has been evaluated, both the sine and the co- 
sine of the required Z,o setting are available, as given by 
the following formulae, which are derived by considering 
the geometry of the plane normal to the p axis: 

XIBXPIPNI (8.11) 
s i n @ =  iNPj_PNi , 

cos@ = £IBXPIPNI (8.12) 
INPJ_PNI 

However, in practice, the denominator of these equations 
need not be used, and indeed, it can only cause trouble 
by vanishing in the event that 1N is parallel to 15. (The 
numerators also vanish.) We use, as always, the double- 
argument inverse of the tangent function to obtain 

1 PIP Lp= tan- ~lBX{pip}N 1. (8.13) 

This equation also fails if I~ is parallel to 15, but this is of 
no consequence, and providing that there are no wires or 
tubes attached to a crystal-cooler preventing free motion 
of the goniometer-head, any solution is equally accept- 
able if P corresponds with the real ,~. We already know 
the x-rotation operator, X, and we can then demand that 
the rotated position of the p axis, xPI, be perpendicular to 
an axis which we shall call the swing axis, ~;, which is usu- 
ally made to correspond with the optic axis of the crystal- 
viewing telescope. This has the effect of constraining the 
virtual X axis to lie along the telescope axis, which makes 

perpendicular to 15. The equation which must be sat- 
isfied is 

ISBRPI = 0 .  (8.14) 

This, again, has the same form as (4.6), but we would not 
normally regard either the swing axis, S, or the rotated p 
axis, :~PI, as goniostat axes. Even so, the solution follows 
the normal pattern where we define a subtrahend 

sz = ISBIB:KPI, (8.15) 

a divisor 

dz = IISBj]3J:PI 2 + ISBIBJ:PI 2, (8.16) 

a zero angle, this time about the beam axis, 

//3 o -- tan-I[S{BB~J~B}]~P', (8.17) 

and finally the beta angle itself 

/13 ~- L~o -Jr- cos-1 ~ , 
--Tr 71" 

(8.18) 
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/o 
6 
6 
6 
L~ 

I I .  II 

Table 5. Symbol table for §9 

a pair of small-angle rotations used as generators of a general precession motion 
an instantaneous (i. e. not necessarily constant) precession angle 
a small-angle rotation describing a precession motion 
an ordinary rotation operator equivalent to 6 

v 

a small-angle vector = ( A,/2, 0 ) representing 6; its direction of action is denoted by angle brackets 
an angular parameter describing the development of a precession motion 
implies and is implied by 
the Euclidean norm of a vector or covector 

which is normally a constant. The solutions for the three 
angles, L/3,/X, and Lp, are used to specify a constrained- 
rotation operator 

= B i l l  5, (8.19) 

uniquely. We are now in a position to solve for the an- 
gles of the real goniostat, Z l , / 2  and/3 ,  using (4.12)- 
(4.14), and can choose the sign of the second axis to avoid 
steric problems. On the FAST system, the only problem 
of importance is the necessity to avoid a collision of the 
crystal-goniostat with the crystal-viewing telescope, and 
the more negative solution for Lfl is always chosen. 

9. Precession motions and a vector notation 
for small-angle rotations 

It is very convenient on an area-detector diffractometer 
to be able to perform a precession motion after align- 
ing the normal of a reciprocal-lattice net plane (i.e. zone 
axis) with the incident beam. This results in a charac- 
teristic photograph which can be used for alignment and 
crystal-assessment purposes. The same motion is also 
valuable when using a fluorescent scatterer to calibrate 
the response of an area diffractometer (Thomas, 1989, 
1990a). The mean orientation of the crystal, (~, during 
these motions is calculated according to the equations of 
§8. 

To generate a precession motion, we combine rotations 
as if vectorially according to 

6 = g sinLz9 + 6 cosAvg, (9.1) 

where LO is a parameter controlling the evolution of the 
precession motion (Table 5 for notation). The rotations 
denoted vectorially by ~ and d need bear no special re- 
lationship to each other, but generally they are set to be 
of the same magnitude, and to act about orthogonal axes 
mutually perpendicular to the incident beam. In such a 
case, Zo (defined below) becomes constant and equivalent 
to Buerger's angle,/2. The vectorial addition implicit in 
(9.1) works even when the angles of rotation are not very 
small, as demonstrated in Fig. 1, where the axis, 6, of the 
resulting rotation is at the zenith, and both Lc and Zs are 
rather large. Neither ~ nor 6 is held to act first in (9.1): 
they act simultaneously, obviating the problems noted by 
Rodrigues (1840) of non-commutativity with respect to 
the axis (but not the magnitude) of the resulting rotation. 

It should be noted that whereas ~, 6 and 6 do represent 
rotations, they do not act as operators, and, in practice, we 
represent these rotations by small-angle vectors such as 

6 ~ 6 ) - -  ¢==~ ( 5 -  (,~,/~, P ) ,  (9.2) 

whose components, apart from a factor of two, cor- 
respond with the first three components, A, ~, u, of 
the four-dimensional real notation recommended by Di- 
amond (1988) when the square of the angle of rotation is 
negligible. In the computer programs developed for the 
Enraf-Nonius FAST system in Cambridge, so-called vec- 
tors like those in (9.2) are used extensively for internal 
communication of rotations. 

Small-angle vector representations of rotations can be 
converted into general representations of rotation through 
the intermediary forms of the signed axis and angle of 
rotation: 

Lo--11611, (9.3) 
O = 6/Zo. (9.4) 

Then (5 = 6 ( O , / o )  can be generated in the normal way. 
The notation of (9.2) in conjunction with (9.3) and (9.4) 
is useful for basic work with rotations of any magnitude, 
providing that a well behaved differential structure is not 
needed. 

The calculation of a precession motion is completed by 
operating 6 ( - -  6) onto t~ to give 

]~ = 6(~,  (9.5) 

and solving using the iterative equations of §6. It will be 
noticed that the motion represented by 6 or by 1~ is a gen- 
uine precession, and a well made three-circle goniostat 
driven in accordance with (9.5) will execute a large-angle 
precession motion more accurately than can a Buerger 
precession camera, which has only two-circle supporting 
cradles (Buerger, 1944, 1960). 

10. Crystal-viewing positions 

On a diffractometer which has an Eulerian cradle to sup- 
port the crystal, there is usually no difficulty in setting up 
standard viewing positions to aid positional adjustments 
of the crystal on the goniometer-head. This is not true 
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] R  3 

H 
fiv, fiv,~w 
T 
fv,'~o, fw  
(, 
f, 

Table 6. Symbol table for §10 

the vector space spanned by ordered triplets of real numbers 
the adjustment axes of a goniometer-head, arranged as a matrix 
the adjustment axes of a goniometer-head, assumed mutually perpendicular 
the axes of the crystal viewing telescope, arranged as a matrix 
the optic axis (O) and the two cross-wire axes (U and W) of the crystal viewing telescope 
a rotation operator specifying a standard crystal viewing position relative to the telescope 
components of Q in its representation as a 3 x 3 rotation matrix 

with a kappa-bracket  diffractometer for steric reasons, 
and it is generally more helpful to make use of  a small 
computer  program which can make use of a table of  use- 
ful viewing orientations held in a convenient form. To do 
this, we define a quantity, H (Table 6), which describes 
the orientation of  the slides on the goniometer-head.  A 
suitable representation for it is 

H" ~ ( l~ts I~v I~w ), (10.1) 

where fi ts,  I~v and I~w point along the three slides in 
the direction conventionally taken as positive. We simi- 
larly define a quantity, T ,  to describe the three axes of  the 
crystal-viewing telescope, equally well represented by a 
triplet of  pointers 

T. ~ (¢v  ¢o Cw) .  (10.2) 

It would be normal for both sets of  pointers to form a mu- 
tually orthogonal r ight-handed triplet, and since no mean- 
ing can be attached to their length, they can be set to be 
'unit vectors '  for algebraic convenience,  so that 

H -  H = I (10.3)  

and 

T . T = I ,  (10.4) 

at which point the computational  behaviour of  the point- 
ers in H and in T becomes so similar to that of  signed 
axes that we can even adopt a matching notation. In these 
equations the centred dot is used to denote the direction 
of  action of  H and T when used as operators. Compu-  
tationally, moving the dot from right to left is equivalent 
to transposing the matrix. Acting as operators, . H  and 
• T map IE 3, as a model of  direct or reciprocal space, to 
the vector space, IRa;  thus H-  and T- map IRa into IE 3, 
whilst 3 x 3 rotation matrices map IRa into itself. The 

rotation operator, 1~, characterizing the required motion 
of  the goniostat is also held to act autonomically,  map- 
ping IF, 3 into itself. When viewing the crystal,  we require 
that the goniometer-head axes, H ,  be reorientated by the 
goniostat to bring them into some standard relative align- 
ment with the telescope, chosen to facilitate the adjust- 
ment of  the slides. Given the action of  the operators, and 
that we wish to rotate the goniometer-head rather than the 
telescope, there is only one possible equation to represent 

this, which is: 

E = T - Q n . H  

~ (' ul %1 

e ov e . o w -  Itiv • 

(10.,5) 
The structure of  this equation forces Vn,  the representa- 
tion of  the 'n th  standard v iew' ,  to be an archetypal 3 x 3 
rotation matrix. Inspect ion of  (10.5) will show that if the 

unit matrix substitutes for V, then 1~ does, indeed, request 
a motion which brings the head axes into alignment with 
the telescope axes, as illustrated in Fig. 7. 

Fig. 7. The viewing position, VU+. The calculations of the viewing 
positions are cast in such a way that the rotation matrices represent- 
ing them bear a simple relationship to the view the experimenter 
obtains by looking down the crystal telescope. The view shown is 
the datum position, when no rotation is requested. The geometry 
of the FAST system means that the horizontal slides can be adjusted 
simply by flipping the goniometer-head through 180 ° repeatedly for 
each of the perpendicular slides. This means that the first four stan- 
dard viewing positions are represented by particularly simple rota- 
tion matrices. However, it is not possible to rotate the goniometer- 
head through 180 ° about any axis suitable for adjusting the vertical 
jack without causing a collision with other parts of the hardware. For 
this reason, we adopt the tactic of swinging the goniometer-head to 
plus or minus 45 ° about the optic axis oftbe telescope, and the crys- 
tallographer can gauge the position of the centre of rotation against 
the tele~ope cross wires. 
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Table 7. Standard-view matrices for the Enraf-Nonius FAST system 

The sign subscripted to each rotation matrix specifies which solution for/n is to be used. "V'u+ and ~'U- are used to adjust the U 
slide of the goniometer-head. Vv+ and V v -  are used similarly to adjust the V slide. ~'wl× and Vwr× or ~'Wly and Vwry are 

used to adjust the W jack. ~'QUIT is used to park the goniostat safely after the crystal is centred. The symbols x, y, z, U, V, W 
and O on the last three matrices are labels identifying the elements. 

(1 o o )  (o I o o )  
VU+ = 0 1 0 "V'u- = - 1  0 

0 0 1 _ 0 0 1 _ 

(o _i o) (o i o) 
"VV+ = 1 0 0 "VV- = -1  0 0 

0 0 1 _ 0 0 1 _ 

( 1 ( 0 ,./--7 - -  0 -__A1 l__k_ 
, , ` / 2  

VWI x : I 0 Vwr x : 1 0 
0 -__! ~ 0 x I 

,/2 ,/2 + 75 ,/-7 _ 

o - -  , ~ 0 - -  

VWIy = 1 Vwry = 0 1 
1 1 - 1  1 

0 ,/--5 + ,/-7 0 ,/--7 _ 

x y z • (1 o o )  
VQUIT = Y 0 1 0 

~ 0 0 1 _ 

U 0 ~I" U V 1'I" 
o o )  o 

T - ~  Y 0 ,/--7 ~ H.--~ 9 0 1 0 
- - 1  1 z 0 ,/--7 ,/--7 z 0 0 1 

Equation (10.5) has been used for many years in the 
computer program developed for the FAST system at 
Cambridge, and eight standard views are found to be 
ample. The matrices, V,~, representing simple rotations 
about the telescope axes were originally calculated by 
hand, based on the positions of the goniostat which are 
sterically allowable, but this is much simpler than calcu- 
lating axial angles directly when the kappa axis is inclined 
at about 50 ° to the omega and phi axes. They are shown 
explicitly in Table 7. The values of the components of the 
matrices representing the goniometer-head and the tele- 
scope are those for a standard FAST system using the pre- 
ferred laboratory axes (x towards the source, 9 towards 
the front of the machine and z upwards). 

1 1 .  T h e  d i f f r a c t i o n  a n g l e  

The diffraction condition for X-rays is defined by momen- 
tum balance and energy balance. A convenient form to 

represent both the crystal momentum and the momenta 
of the incident and scattered photons is to use operators. 
These may be left- or right-acting, and in momentum 
space (and therefore in reciprocal space) they behave like 
vectors. Computationally, they can be represented by col- 
umn or row vectors respectively. Thus, in the absence of 
phonon coupling, we can write (see Table 8 for notation) 

( T = ( R - ( S  ~ T ) = R ) - S ) ,  (11.1) 

where - S )  represents the momentum of the incident pho- 
ton, T) represents the momentum of the scattered photon, 
and R), which represents the crystal momentum, is often 
referred to as a reciprocal-lattice vector. The energy of a 
photon is conventionally given by E = cp = chllkll, but 
the most convenient way of expressing the conservation 
of energy here is by means of a quadratic form propor- 
tional to Ez: 

(TT) = (SS). (11.2) 
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C 

E 
P 
k 
R), (R 
S),(S 
T), iT 
x) , (x  
/ r  

~,, ,i, 
q, lq, 

q,l,I, 
vz~, 
£ 

77 
P 
Z 

y 
COt 
COt-  1 { k cos 

k sin } 

Table 8. Symbol table for  § 11 

the speed of light 
the energy of a photon 
modulus of momentum 
a wavevector 
the periodic structure of a Bragg-plane in the diffracting position, and its conjugate 
the periodic structure of minus the (mean) incident beam wavevector, and its conjugate 
the periodic structure of the scattered beam wavevector, and its conjugate 
the periodic structure of a Bragg-plane (referred to the crystal frame) and its conjugate 
an angle which is used when L~ cannot be defined 
the (Arndt-Wonacott) diffraction angle 
rotation through L~, and its inverse 
the diffraction-angle invariant operator 
the diffraction-angle skew-symmetric operator, and its inverse 
the diffraction-angle symmetric operator 
the derivative with respect to L~ 

the symmetric form (Sq2.1_q2X) = (X~I~S) 
the antisymmetric form (S~J-~X) = (Xtg]_gAS) = -(Xtgj-qJS) = -(Sg2]_g2X) 
the symmetric form (S~J_g2R) = (RgJJ_kvS) 
a general parameter 
the antisymmetric form (SqJj-~R) = (Rg2]_~S) = -(R~j-g2S) = - (S~I.qJR) 
the cotangent function 
the double-argument inverse of the cotangent function 

The symmetry of the notation used here, even more 
strongly reminiscent of the 'bra-ket' notation of Dirac 
(1958), enables the symmetry of scalar forms such as 
those in (11.2) to be identified immediately. The direc- 
tion of action of the symbols follows the same conven- 
tion as that for axes and sixas in §4: the naked side of 
the symbol displays the geometrical properties, and the 
marked side displays only scalar properties. The scalar 
form (SR) = (RS) is symmetric, so these two equations 
can be combined by substitution of (11.1) into (11.2) to 
give the equation known as 'the diffraction condition': 

(RR) - (SR) - (RS) (RR) - 2 (RS) 
(Ha) - 2 (SR) 

----0. 

(11.3) 

If R) is taken as the argument, this is the equation of 
the Ewald sphere; and if S) is taken as the argument, 
it is the equation of the diffraction plane. We define 
the (Arndt-Wonacott) diffraction angle, Z¢, as the angle 
through which the crystal must be turned about the ro- 
tation axis in order that the Bragg plane represented by 
X) when the goniostat is at its datum position be brought 
into the diffracting position, when it will be represented 
by R). The corresponding rotation is denoted by ~ ,  and 
therefore 

R> = ~X> -: :- < R =  <X~. (11.4) 

Substitution of this into (11.3) gives directly 

( X ~ X )  - 2 (S~X)  = 0, (11.5) 

but this reduces trivially to 

(XX) (S~X)  : O, (11.6) 
2 

because ~ = I cancels out. We can then expand 
using (3.6) so that (11.6) becomes* 

(XX) (SkVlg2X) - (Sg2j-~X) s i n / ¢  - (S~.[~X). cosL¢ 
2 

= 0. (11.7) 

This equation also has the same form as the fundamental 
goniometric equation (4.7) even though there are no first- 
or third-axis angles. Solving by the normal route for the 
second axis angle would give 

/ ¢  = tan-l(s{~J '~}X>~l ~ 

( X X ) / 2 -  ( S ~ [ g A X ) ~  (11.8) 
± cos1 27;Tx  j' 

which is the generalized form of the dimensionless equa- 
tion (7.13) in Wonacott (1977). However, an alterna- 
tive solution involving only one inverse trigonometric 

* Note that the equivalent formulae given by Bricogne (1986, bottom 
of p. 110) are correct only for the normal-beam geometry, since they 
omit the (Sg2I~X) term. Messerschmidt's (1986, p. 64) formula has 
a peculiar structure, missing three terms, and is correct only when the 
basis vectors of his representation are tied (rather undesirably) both to 
the rotation axis and to the reciprocal-lattice vector in such a way that 
the missing terms are forced to vanish. 
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calculation is usually preferred in practice, particularly 
when predicting the positions of diffraction spots at high 
speed during dynamic 'diffractometer mode' data collec- 
tion (Thomas, 1982a, b, 1985). We can define the skew- 
symmetric form 

7 / :  (11.9) 
and the symmetric form 

c : <SgI~I'X ). (11.10) 

We also define, somewhat less obviously, the skew-sym- 
metric form 

y : ( S g J g R ) =  (SgIg~'X) 

= (S~I'Ig, X ) cosL¢ - (SgIgX > sinL¢ 

= <svL¢ x> 
: (S%¢R),  (11.11) 

which is what 7/ would have been if X) were in the 
diffracting position, and the symmetric form 

p = (SglgR) = <SgIg~,X ) 

= (SgIgX) s i n / ¢  + <Sg'I~I'X ) cosZ¢ 

= <xx--! 
2 

(11.12) 

which is what c would have been if X) were in the 
diffracting position. [Cf. equations (3.3), (3.6) and (3.9).] 
The skew-symmetric form, y, is immediately recognis- 
able as being proportional to the instantaneous signed in- 
verse Lorentz factor whenever ~ represents the instan- 
taneous rotation axis [see Milch & Minor (1974), equa- 
tion (7); Wonacott (1977), §7.3.5, equation (7.35) or 
Thomas (1982a), §2.2.2, p. (2.4)] and satisfies 

~2 o( y 2 + p 2  = 7 / 2 + c 2  ~ y :  j:V/772 + c 2 _ p 2 ,  

(11.13)  

where ~ is equivalent in function to the same symbol con- 
ventionally used dimensionlessly in the rotation method. 
The latter equation is a generalized form of that quoted 
by Lipson (1972): L -1 = (sin 2 20 - ¢2)1/2. Then sub- 
stituting 2tan(L¢/2)/[1 + tan2(/¢/2)]  for sin/g, and 
[1 - tan2(g¢/2)]/[1 + tan2 (L¢/2)] for cosg¢, (11.7) be- 

comes 

(P+c)tan2L-'~-¢2 - 2 ~ ? t a n ~ - - + P - C = 0 '  (11.14) 

whose solution [with the form of y given in (11.13)] is 
given by 

L ¢ :  2 t a n - l { :  - y }  
+ P  (11.15) 

{ - } 
- 2 tan -1 <S~l~X> + <SgLgR> ' 

which is the generalized form of the dimensionless equa- 
tion (7.14) in Wonacott (1977). The sign of y in this 
equation is left free when the quadratic equation (11.14) 
is solved, corresponding to the two possible diffracting 
positions, but it can be fixed unambiguously by observ- 
ing that L¢ must change sign if R) and X) are inter- 
changed. The sign of y does not have any beating on 
whether or not the diffraction condition is satisfied, be- 
cause the definition of p ensures that it is, and (11.14) 
comprehends only the goniometric conditions. The solu- 
tion is not always numerically well conditioned even with 
a double-argument inverse tangent function, since 7 / -  y 
and c + p can go to zero simultaneously, so, equivalently, 
by substitution of 2 cot (L¢/2)/[cot2 ( / ¢ / 2 ) +  1] for sinL¢ 
and [cot2(L¢/2) - 1]/[cot2(L¢/2) + 1] for cosL¢ we ob- 
tain 

Z¢ 
"'(p-e)cot 2L¢ - 2 r / c o t  + p + e = 0 ,  (11.16) 

T Y 

whose solution is 

Z ¢ = 2 c o t - l { Y + ~ } _  

- 2 t a n - l { y +  : }  (11.17) 

(SglgR> - <S919X) 
: 2 tan -1 <SgIgR ) + ($9;9X)]' 

where, again, the sign of y is fixed by observing that L'¢, 
must change sign if R) and X) are interchanged. This is 
the only equation in this paper in which the rotationally 
symmetric operator, ._[., appears in the odd argument of 

Incident 

X-ray beam 

Ewald sphere 

p I\ 

Fig. 8. The half-angle constructions for the Arndt-Wonacott angle. In 
this diagram the even component is represented horizontally, and 
the odd component vertically. The radius of the circle is the conven- 
tional ~ of the rotation method. The left-hand right-angled triangle 
represents equation (I 1.15), the lower right-angled triangle repre- 
sents equation ( ! 1.17). The lightly drawn arc of large radius repre- 
sents the section of the Ewald sphere intersecting the orbital plane 
of the reciprocal-lattice vector, X I, which comes into the diffract- 
ing position at R). This diagram is closely related to Fig. 10, which 
shows the symmetries more explicitly. 
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the inverse tangent function and the skew-symmetric op- 
erator, • ~, in the even argument. This is not a sign of a mis- 
take, but more an artefact of an implicit rotation through 
90 ° when changing to the cotangent formula: this is seen 
moreclearly if it is noted that (A = (S~]g2, (B = (SkO]_~ 
and • are like mutually perpendicular vectors used as a 
basis for the calculation; the symmetry of the embedded 
rotation operators is neither expressed nor relevant. We 
use (11.15) when 77 - y > r / +  y ,  and (11.17) other- 
wise. If y2 _< 0 then we can set 

unless 772+e 2 = 0 when we can set / ¢  = 0. These 
substitutions, which can be made when the normal form 
fails, are often computationally very useful, particularly 
in algorithms for predicting diffraction patterns (Thomas, 
1982a, chapter 4). Equation (11.18) is related to, but not 
exactly equivalent to, equation (7.1) of Wonacott (1977). 

The geometrical relationships between (11.8), (11.15) 
and (11.17) are shown in Fig. 8. 

12. The dependence of the diffraction angle on 
variable experimental parameters 

The derivatives of the diffraction angle with respect to all 
of its variable arguments are extremely useful, both dur- 
ing and after collection of diffraction data, since they are 
required in the equations used to refine estimates of ex- 
perimental parameters. Derivatives of &b are evaluated 
more easily by applying the implicit function theorem to 
(11.6) than by direct differentiation of explicit forms such 
as (11.8), (11.15) or (11.17). Using x as a typical param- 
eter, and (11.6) as the implicit function, we can write 

c9L¢ Ox 2 (S~X)  
- -  = (12.1) 
Ox OL¢ 0 ( ( XX)  2 ( S E X ) )  

The denominator reduces trivially to -(S~J-kOR) by ex- 
ploiting the differential eigenequation (3.9) of the rotation 
operator, as indeed in (11.11). The numerator can be re- 
cast into a form facilitating the use of the chain rule, so 
we have 

OL¢ 
Ox 

1 ( 0X) 
(S~J-~R) ( ( X -  S~ )  Ox 

os )  _ (s  
(12.2) 

or, more conveniently, 

OL¢ 1 ( OR) OSI ~ 
Ox -- (Sk~;~R) \(T ~ - (R Ox ] . (12.3) 

The dependence of the diffraction angle on the scattering 
vector is important, so substituting R) for x, we obtain 

OL#, _ (T = (T  (12.4) 
VR)L¢ ~ 0R} (SkO_[g2R) y ' 

which could be interpreted as the signed Lorentz factor 
times the radius vector of the Ewald sphere at R), but is 
more properly interpreted in terms of the contour surfaces 
of constant Z¢ parallel to the surface of the Ewald sphere, 
which is reflected by (T appearing as a right-acting op- 
erator, which behaves like a covector in reciprocal space 
(Burke, 1985, pp. 18-21; 27-31). Equivalently, uncoup- 
ling the rotation through the diffraction angle by using X), 
we obtain 

oz¢ 0Z¢0R/ 
% ¢ ¢  -- ox) OR) 0X) - (S,I,I,I,R) = y 

(12.5) 

which has the same interpretation, but is referred more 
directly to the crystal. The dependence of the diffraction 
angle on the incident beam is also important, and is ob- 
tained by substitution of S / for x, giving 

OL¢ ( - R  (R 
Vs)L¢ - - -  = - , (12.6) 

os) (sq, J-,I,R) - y  

which is minus the signed Lorentz factor times the recip- 
rocal-lattice vector, appearing properly as a covector in 
reciprocal space with contour surfaces parallel to the 
diffraction plane at S). Though the notation is very dif- 
ferent, this is the same as the second displayed equa- 
tion in Thomas (1982a), §2.2.2, p. (2.4). The dynamic 
refinement of variables describing the geometry of the 
diffraction process during a data-collection run is an iter- 
ative procedure, which is most naturally perfqrmed using 
an incremental reconstruction of the conjugate-gradient 
least-squares algorithm described in §§12-14 of Thomas 
(1989), presaged by Thomas (1982a), §2.3.2 and § §6.5.1- 
2. When the refinement is done after the completion of 
the data collection, conventional least-squares optimiza- 
tion procedures are equally appropriate. 

The diffraction angle, Z¢, can be determined much 
more reliably than the detector position of a spot with 
currently available area-detector technology, particularly 
when using the 'diffractometer mode' of data collec- 
tion (Arndt & Thomas, 1985) and the derivatives quoted 
above play a dominant role in refinement procedures. The 
last equation (12.6) can generally be used directly, since 
S) is a basic experimental variable, but O&b/OX) (12.5) 
enters by means of the chain rule of the differential cal- 
culus, coupling/~, to the free parameters of the unit-cell 
matrix, which will usually include explicit orientational 
terms. 

One of the consequences of adopting the tetravariate 
half-angle notation here would be that the coordinates 
representing rotations would be homogeneous, and differ- 
entials with respect to variations in the direction of axes 
would be unified with the derivative with respect to the 
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angle of rotation. This could allow a degree of refinement 
of axial directions, but such a facility does not appear to 
be of  any utility in area diffractometry. 

13. Geometrical interpretations of rotational 
operators 

All of  the rotational operators defined in §3 have a nat- 
ural geometrical interpretation Which can be elucidated 
to some extent by diagrams. However,  it is difficult to 
give concrete representation to the essential conjugacy 
between left and right forms such as the axis and the sixa. 
For most purposes, an axis can be represented simply by 
the line of stasis, drawn as a single straight line. It has 
no preferred direction, and if the axis is free, no sense of  
rotation. A signed axis is very similar, but the positive 
sense of rotation can be denoted by a characteristic sym- 
bol such as an arrow wrapped around the line. The con- 
ventional metrical representation of  an arrow along the 
line of  stasis pointing in the direction in which the rotation 
appears clockwise would not be acceptable here because 
it assumes a known chirality of representation. 

Although strictly indistinguishable (except by nota- 
tion) from an axis, a sixa is often most simply represented 
by a construction based on the orbital planes. Then the 
law of multiplication of  sixa on axis can be demonstrated 
geometrically by a construction similar to that of covector 
acting on vector as given, for example, by Burke (1985, 
pp. 18-21; 27-31 ). We can start by taking a short segment 
of  the line of  stasis and define it to have unit length; this 
is only of heuristic significance, since no other meaning 
attaches to the length of the segment. With the sense of 
positive rotation, this is then a finite geometrical represen- 
tation of the signed-axis operator. We can then take two 
orbital planes, one at each end of  the axial line segment 
and including the sense of positive rotation, as a repre- 
sentation of the signed sixa. When a sixa acts on an axis, 
we can extract a scalar result which is the density of or- 
bital planes perceived by the axial line segment. Thus if 
the axis and sixa belong to each other the answer is 1 (see 
Fig. 9a), if they belong to exactly antiparallel axes it is - 1 
(Fig. 9b), and all other answers are intermediate (Fig. 9c), 
in conventional notation equal to the cosine of the angle 
between the axes. 

In Cartesian-Euclidean space these simple geometri- 

cal constructions suffice. More generally, it is necessary 
to remember that both axis and sixa comprehend both the 
line of stasis and the orbital plane, and that the empha- 
sis on one or the other is one of interpretation that we 
impose for our own convenience; it is not known to the 
underlying mathematical structure. The act of changing 
from left-acting to right-acting operators (or vice versa) 
merely swaps the roles of the line of stasis and the orbital 
plane; thus each of these mutually conjugate operators 
themselves comprehend both geometrical aspects simul- 
taneously, and can therefore be said to have a self-dual 
structure. 

A more detailed discussion of  the differential geomet- 
ric structure of the rotation operators is beyond the scope 
of  this paper, but the reader will note that it is (ex hypoth- 
esi) homogeneous and metric-invariant. In other words, 
the differential structures of, say, ErE or E]_E are not ma- 
terially different from those of E_[E or E-rE; certainly we 
no longer worry about why the direction cosines, l, m,  n, 

<55S3 
=1 
=1 

Fig. 9. The action of a sixa on an axis. In many respects lhese two 
quantities act upon each other in exactly the same way as do a co- 
vector and a vector; however, sixas and axes as defined in this pa- 
per comprehend both the covector property and the vector property 
simultaneously, so a specific geometric assignment can be restric- 
tive. Whilst it is true that for all normal purposes we can choose a 
Cartesian-Euclidean metric, where the line of stasis is unambigu- 
ously normal to any of the orbital planes, it will be noted that under 
conditions of  metric variability (such as those that occur in relativis- 
tic transformations, which are essentially equivalent to observing 
through a distorting imaging system, or a non-linear mapping) the 
implied right angles will also distort: the abstract operators proposed 
in this paper survive under these conditions, as does the relation- 
ship between the sixa and the axis. whereas the older formalisms 
based on unit vectors, vector scalar products and perpendicularities 
fail. These topics are clearly not normally the concern of crystallog- 
raphers, so it would not be proper to discuss them at greater length 
here. but the interested reader will find that the beginning of Burke's 
book of 1985 gives a very clear explanation of the rationale of work- 
ing in this way. Relativity apart, the techniques of applied differen- 
tial geometry should not be under-rated, because they have a very 
powerful effect of exposing the true nature and behaviour of the 
equations that we use. and very often guide the analyst to simpler 
and more reliable analytic forms. 
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appear linearly in the skew-symmetric parts of rotational 
calculations and quadratically in the symmetric, or about 
what happens in our computer programs if 12 + ra 2 + n 2 
accidentally diverges from unity. We can properly regard 
these as problems of coordinate representation, and not as 
properties of the underlying rotation. 

Concluding remarks 

Most calculations can be laborious and difficult if an in- 
appropriate or clumsy representation is chosen for them. 
I have shown here that an adequate and highly contracted 
abstract operator notation exists for rotations. This en- 
ables the quick and reliable solution of practical problems. 

Component representations of the operators are also 
quoted for substitution into the final answers for numeri- 
cal computation of the results. In all cases, the most ob- 
vious representation in terms of the full angle of rotation 
is seen to be preferable to the quaternion half-angle repre- 
sentation; the former is simpler and is always numerically 
well conditioned. 

Completely general solutions to three practical calcu- 
lations have been given: the analytic solution for the 
three-circle crystal-goniostat is the simplest and fastest 
known; the calculation of crystal-viewing positions for 
the kappa-bracket goniostat of the Enraf-Nonius FAST 
system is new; and the calculation of the Arndt-Wonacott 
diffraction angle is the only account which is known to 
be correct in the general case. All of the calculations in 
this paper have been subjected to extensive experimental 
verification, being part of the computer program written 
for the Enraf-Nonius FAST system in Cambridge by the 
present author. The calculations appropriate for use by 
area-detector cameras less versatile than the FAST sys- 
tem were also released to the EEC Cooperative Workshop 
on Position-Sensitive Detector Software held at LURE in 
Paris in 1986. 

I am particularly indebted to Mr J. J. Thomas for draw- 
mg my attention to the analysis of rotations in the engi- 
neering literature, to Mrs Mary Holmes for her unstint- 
ing help in obtaining many of the older references, to 
Dr P. A. Tucker and especially to Dr R. Diamond for many 
helpful comments. Most of the computational work lead- 
ing to this paper was supported by the Medical Research 
Council of Great Britain as part of the development of the 
Enraf-Nonius FAST system; the abstract notation was de- 
veloped during a long illness when I was not in employ- 
ment, and the manuscript was completed at the European 
Molecular Biology Laboratory supported by an EMBO 
long-term fellowship. 

APPENDIX 

Reductions of the general case 

Equation (4.7) is of the form 

12 = Z + 0 sin Le + g cos Ze, (A1) 

whose solution, following (4.10) and (4.12), is 

Z e = t a n - l {  O }  1 ( ] 2 - - 2 "  ) 
$ + c o s -  ~ /0  2 + $ 2  " (A2) 

But we also have the diffraction condition (11.7) in the 
form of (A1), and its solution (11.15) is given in the form 

/A3/ Z e = 2 t a n - 1  $ + 1 3  I ' 

where 

W = ~0 ~ + $ 2 _  ( V - Z ) e  (A4) 

contains the double-valuedness of the solution. It there- 
fore follows that the simpler form of the solution for the 
Arndt-Wonacott diffraction angle is also available for the 
solution of the three-circle crystal-goniostat. With this 
form for the second axis, the general case of the three- 
circle crystal-goniostat is solved using only three inverse 
trigonometric functions, one inverse tangent for each axis 
[~f. (4.14), (A3) and (4.13) respectively], which is cer- 
tainly the simplest known, and probably the simplest pos- 
sible, solution. 

These are especially convenient for a well aligned Eu- 
lerian cradle, in which O = If~xlX~l = 0, ,f = 
I~XiX,~l - i and Z = I~XlX~,l = 0, For  the designed 
geometry of the kappa-bracket goniostat of the CAD-4 
diffractometer, the corresponding values are only slightly 
less convenient: O = [f~K_[K,:I)[ = 0, £ = If~KIK~l- 
sin e 50 ° and Z = [f~KIK~ I = cos 2 50". For very accu- 
rate calculations of the positions of real goniostats, which 
are never perfectly aligned, the equations do not reduce 
beyond their quoted forms. 

The equations discussed in this Appendix are illus- 
trated in Fig. 10. 

(~' - 2", +lWI) 

(-$. .O~ 

(v - 2". -IWl) 
Fig. 10. Full-angle and half-angle forms of the general solution. 

Like Fig. 8, this diagram has the even components drawn on a 
horizontal axis, and the odd on a vertical one. The full-angle, 
/_e, is given by equation (A2), the left half-angle, /_e/2, by 

/_e 
equation (A3), and the lower half-angle, -~, by the correspond- 

ing cotangent formula. This diagram is adapted from one sug- 
gested by Dr R. Diamond. 
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Abstract 

A formalism for deriving electrostatic potentials in 
crystals is presented, with emphasis on the choice of 
origin and the determination of the mean inner poten- 
tial. Conditions for applying the conventional origin 
chosen for isolated molecules are specified. The for- 
malism is applied to orthoboric acid, and maps of 
the electrostatic potentials are presented. Extinction 
appears to be a severe problem in mapping electro- 
static potentials, and its effects are investigated with 
a multipole expansion of the electron density. The 
effects of thermal motion are seen to be small at points 
far from the atomic core regions. 

Introduction 

It has been shown that electrostatic potentials in 
crystals can be derived from X-ray diffraction data 
(Stewart, 1979). This paper will present our applica- 
tion of this formalism. Even though electrostatic 
potentials are of major importance in the investigation 
of chemical dynamics, only a few groups work, or 
have worked, with the mapping of potentials from 
diffraction data (Moss & Coppens, 1980; Moss & 
Feil, 1981; Feil & Moss, 1983; Stewart, 1982; 
Swaminathan, Craven & McMullan, 1985). Bertaut 
(1952, 1977) has worked with the mapping of 
potentials in ionic crystals. 

The most frequently applied method for determin- 
ing electrostatic potentials from crystallographic data 
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(e.g. Swaminathan, Craven & McMullan, 1985) is 
based on a multipole expansion of the electron 
density. So far, this method has been used to derive 
the potential of a single molecule from the multipole 
functions and the expansion coefficients. 

In this paper we concentrate on the potential inside 
a crystal. The first section discusses the distinction 
between the electrostatic potential in a crystal, calcu- 
lated either by a Fourier sum in reciprocal space or 
by a superposition in direct space of the potentials 
from the units which build up the crystal. The charge 
density of such a unit - the building block for the 
crystal - could be the charge density inside a single 
unit cell or it could be the charge density from the 
atoms or molecules in the unit cell. 

The Fourier coefficient of the potential for the 
reciprocal-lattice vector of length zero is of special 
importance when discussing the two different ways 
of expressing the potential as this coefficient is the 
average value of the potential inside the crystal. It is 
known as the mean inner potential. Changing this 
Fourier coefficient corresponds to changing the origin 
for the potential inside the crystal. So in the first 
section we pay special attention to the question of 
how to determine the origin of the potential and how 
to calculate the mean inner potential. An important 
part of this section is found in Appendix A. 

In the second chapter we discuss some of the poten- 
tial maps and the chemical information which can be 
derived from X-ray diffraction data. Both maps of 
the potential in a crystal and the potential of a single 
molecule and their relations are discussed. 

The actual calculations deal only with the potential 
in a crystal. We use the algorithm of Stewart (1982) 
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